User's Manual

无纸记录仪

通讯协议

目录

第一章 通讯功能概要

第二章 通讯指令

附录 1 仪表寄存器地址

附录 2 CRC 循环冗余校验算法

附录 3 ASCII 码表

第一章 通讯功能概要

1.1 通信功能一览

采用 RS485 串行接口,使用标准 Modbus RTU 协议。

功能	协议	连接设备
从机	Modbus RTU	主机(测量仪器、PC、PLC 等)

1.2 串口通讯参数

RS485 接口规格

插座类型	绿色端子中 485A+、485B-
连接方式	多点,总线式拓扑网络
通信方式	半双工
波特率	9600, 19200, 38400, 57600, 115200[bps]
起始位	1位 (固定)
数据位	8位 (固定)
校验位	奇校验,偶校验,无校验
停止位	1位、2位
接收缓冲器大小	128 字节
通信距离	小于 1km
终端阻抗*2	外部:推荐 120Ω,1/2W 电阻

第二章 通讯指令

03H 读取保持寄存器

描述

读取仪表保持寄存器,包含通道数据。数据类型包含 32 位浮点型数据、长整形数据。根据通讯组态中的字节交换进行调整。调整类型包含 2143、1234、4321、34124。

发送

命令信息中包含了读取寄存器的起始地址和读取长度。下面是一个从地址为 1 的设备中读取第一通道浮点型数据(寄存器偏移量为 0x00)的例子。

发送格式

名称	数据 (HEX)
从设备地址	01H
功能码	03H
起始地址高	00H
起始地址低	00H
寄存器数量高	00H
寄存器数量低	02H
CRC 校验低	C4H
CRC 校验高	ОВН

返回

返回通道 1 数据,浮点型数据。如仪表中字节交换类型为 3412,获取数据按交换顺序为 00 E0 AB 44,表示 1375。

返回格式

名称	数据 (HEX)					
从设备地址	01H					
功能码	03H					
字节数量	04H					
高位数据(寄存器偏移 0x00)	АВН					
低位数据(寄存器偏移 0x00)	44H					
高位数据(寄存器偏移 0x01)	00H					
低位数据(寄存器偏移 0x01)	ЕОН					
CRC 校验低	A4H					
CRC 校验高	6CH					

附录 1 仪表寄存器地址

类型	寄存器偏移量	备注						
通道1实时量	0000H	32 位浮点型数据						
通道2实时量	0002H	32 位浮点型数据						
通道3实时量	0004H	32 位浮点型数据						
通道4实时量	0006H	32 位浮点型数据						
通道 5 实时量	0008H	32 位浮点型数据						
通道6实时量	000AH	32 位浮点型数据						
通道7实时量	000CH	32 位浮点型数据						
通道8实时量	000EH	32 位浮点型数据						
通道9实时量	0010H	32 位浮点型数据						
通道 10 实时量	0012H	32 位浮点型数据						
通道 11 实时量	0014H	32 位浮点型数据						
通道 12 实时量	0016H	32 位浮点型数据						
通道 13 实时量	0018H	32 位浮点型数据						
通道 14 实时量	001AH	32 位浮点型数据						
通道 15 实时量	001CH	32 位浮点型数据						
通道 16 实时量	001EH	32 位浮点型数据						
通道 17 实时量	0020H	32 位浮点型数据						
通道 18 实时量	0022H	32 位浮点型数据						
通道 19 实时量	0024H	32 位浮点型数据						
通道 20 实时量	0026H	32 位浮点型数据						

通道 21 实时量	0028H	32 位浮点型数据
通道 22 实时量	002AH	32 位浮点型数据
通道 23 实时量	002CH	32 位浮点型数据
通道 24 实时量	002EH	32 位浮点型数据
通道 25 实时量	0030H	32 位浮点型数据
通道 26 实时量	0032H	32 位浮点型数据
通道 27 实时量	0034H	32 位浮点型数据
通道 28 实时量	0036H	32 位浮点型数据
通道 29 实时量	0038H	32 位浮点型数据
通道 30 实时量	003AH	32 位浮点型数据
通道 31 实时量	003CH	32 位浮点型数据
通道 32 实时量	003EH	32 位浮点型数据
通道1实时量	0100H	32 位长整形数据
通道2实时量	0102H	32 位长整形数据
通道3实时量	0104H	32 位长整形数据
通道4实时量	0106H	32 位长整形数据
通道 5 实时量	0108H	32 位长整形数据
通道6实时量	010AH	32 位长整形数据
通道7实时量	010CH	32 位长整形数据
通道8实时量	010EH	32 位长整形数据
通道9实时量	0110H	32 位长整形数据
· · · · · · · · · · · · · · · · · · ·		

通道 10 实时量	0112H	32 位长整形数据
通道 11 实时量	0114H	32 位长整形数据
通道 12 实时量	0116H	32 位长整形数据
通道 13 实时量	0118H	32 位长整形数据
通道 14 实时量	011AH	32 位长整形数据
通道 15 实时量	011CH	32 位长整形数据
通道 16 实时量	011EH	32 位长整形数据
通道 17 实时量	0120H	32 位长整形数据
通道 18 实时量	0122H	32 位长整形数据
通道 19 实时量	0124H	32 位长整形数据
通道 20 实时量	0126H	32 位长整形数据
通道 21 实时量	0128H	32 位长整形数据
通道 22 实时量	012AH	32 位长整形数据
通道 23 实时量	012CH	32 位长整形数据
通道 24 实时量	012EH	32 位长整形数据
通道 25 实时量	0130H	32 位长整形数据
通道 26 实时量	0132H	32 位长整形数据
通道 27 实时量	0134H	32 位长整形数据
通道 28 实时量	0136H	32 位长整形数据
通道 29 实时量	0138H	32 位长整形数据
通道 30 实时量	013AH	32 位长整形数据
通道 31 实时量	013CH	32 位长整形数据

通道 32 实时量	013EH	32 位长整形数据
-----------	-------	-----------

注:字节顺序可在仪表通讯组态中调整。整形数据小数点与表中设置同步。

附录 2 CRC 循环冗余校验算法

1. CRC 校验概述

CRC 校验码的基本思想是利用线性编码理论,在发送端根据要传送的 k 位二进制码序列,以一定的规则产生一个校验用的监督码(既 CRC 码)r 位,并附在信息后边,构成一个新的二进制码序列数共(k+r)位,最后发送出去。在接收端,则根据信息码和CRC 码之间所遵循的规则进行检验,以确定传送中是否出错。

2. CRC 校验算法

{

```
const uchar ucCRCHi[] =
```

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00,

```
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,
0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
```

const uchar ucCRCLo[] =
{

};

0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4,

0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26, 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40

```
//CRC 计算
ushort CalCrc(uchar *pucData , ushort usDataLen)
{
    uchar ucCrcLo = 0xFF;
    uchar ucCrcHi = 0xFF;
    uchar ucIndex;
    while(usDataLen--)
    {
       ucIndex = ucCrcLo ^ *pucData++;
        ucCrcLo = ucCrcHi ^ ucCRCHi[ucIndex];
       ucCrcHi = ucCRCLo[ucIndex];
   };
    return (ucCrcHi * 0x100 + ucCrcLo);
}
```

附录 3 ASCII 码表

			高4位														
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
	0			SP	0	@	Р		р								
	1				1	Α	Q	а	q								
	2				2	В	R	b	r								
	3			#	3	С	S	С	s								
	4				4	D	Т	d	t								
	5			%	5	E	U	e	u								
/Œ	6			&	6	F	٧	f	v								
低 4	7				7	G	W	g	w								
4 位	8			(8	Ι	Х	h	х								
	9)	9	I	Υ	i	у								
	Α	LF		*	:	J	Z	j	z								
	В		ESC	+		K		k									
	С					L		l									
	D	CR		-		М		m									
	Е					N		n									
	F			/		0		o									